

2789 Riverside Parkway Grand Junction, Colorado 81501 Phone: 970-255-8005 Info@huddlestonberry.com

> August 9, 2024 Project#01754-0010

JUB Engineers, Inc. 305 S. Main Street Palisade, Colorado 81526

Attention: Mr. Matt Filla

Subject: Geotechnical Investigation Palisade Sewer Transfer Clifton/Palisade, Colorado

Dear Mr. Filla,

This letter presents the results of a geotechnical investigation conducted by Huddleston-Berry Engineering & Testing, LLC (HBET) for the Palisade Sewer Transfer project in Clifton and Palisade, Colorado. The scope of our investigation included evaluating the subsurface conditions at the site with regard to the proposed construction.

Subsurface Investigation

The subsurface investigation consisted of nine geotechnical borings drilled between February and April, 2024. The borings were drilled to depths of between approximately 10.0 and 26.5 feet below the existing ground surface. The locations of the borings are shown on Figure 2 – Site Plan. Typed boring logs are included in Appendix A. Samples of the native soils were collected during Standard Penetration Testing (SPT) and using bulk sampling methods at the locations shown on the logs.

As shown on the logs, the subsurface conditions were slightly variable. However, the borings generally encountered 0.5 to 1.5 feet of topsoil or pavement section materials above brown, moist to wet, very soft to stiff lean clay soils. The clay soils extended to the bottoms of B-1, B-2, B-3, and B-F&34. In B-5, the clay soils extended to a depth of 8.0 feet and were underlain by brown, wet, very loose sandy silt soils to the bottom of the boring. In the remaining borings, the clay soils extended to depths of between 7.0 and 23.0 feet and were underlain by brown, wet, dense to very dense sandy gravel and cobbles soils to the bottoms of the borings. Groundwater was not encountered in B-1 or B-3 but was encountered in the remaining borings at depths of between 5.0 and 20.0 feet at the time of the investigation.

Laboratory Testing

Selected representative samples of the site soils were collected from the borings and tested in the Huddleston-Berry Engineering and Testing LLC geotechnical laboratory for natural moisture content determination, grain size analysis, maximum dry density and optimum moisture content (Proctor) determination, and Atterberg limits. The laboratory testing results are included in Appendix B.

Palisade Sewer Transfer #01754-0010 08/09/24

The laboratory results indicate that the native clay soils range from slightly to moderately plastic. Based upon the Atterberg limits of the materials and upon our experience with similar soils in the vicinity of the subject site, the native clay soils are anticipated to range from slightly collapsible to slightly expansive.

The native silt soils were indicated to be non-plastic. These soils are below the water table and are generally anticipated to consolidate under loading.

Open Trench Construction

As discussed previously, shallow groundwater was encountered at the site. As a result, dewatering may be required. In addition, soft/loose soils may exist in the bottom of the trench. It may be necessary to utilize geotextile and/or geogrid in conjunction with granular fill materials to stabilize the subgrade soils prior to pipe bedding and pipe placement in some areas. Typically, stabilization can be achieved using crushed stone, pit-run or other granular material in conjunction with geotextile and/or geogrid. However, HBET should be contacted to provide specific recommendations for subgrade stabilization based upon the actual conditions in the trench.

Trenchless Construction

Figure 3 is a fence diagram generated from the geotechnical data based upon profiles provided by bore log data. Although the ground surface elevations of the borings were estimated, the diagram suggests that the sewer line will run through clay soils for most of the alignment. However, shallow groundwater was encountered in most of the borings may impact the proposed construction. As a result, horizontal directional drilling trenchless construction methods are suitable at this site. However, it is recommended that the actual method used be selected by a contractor with extensive experience.

Foundation Recommendations

<u>Lift Station</u>

Based upon information provided to HBET, the bottom of the lift station will be at an elevation of approximately 4652 feet. Based upon the geotechnical boring conducted at this location, the bottom of the lift station will bear on the dense gravel and cobble soils. Based upon recent groundwater monitoring data, the seasonal high groundwater is located at an elevation of approximately 4,667.8 feet.

In order to limit the potential for point stresses to develop on the bottom of the lift station foundation, a minimum of 6-inches of base course is recommended between the bottom of the lift station and native gravel and cobble soils.

Prior to placement of base course, it is recommended that the bottom of the foundation excavation be proofrolled to HBET's satisfaction. Base course should be compacted to a minimum of 95% of the modified Proctor maximum dry density, within $\pm 2\%$ of the optimum moisture content as determined in accordance with ASTM D1557C. For foundations resting on properly compacted gravel and cobble subgrade soils and base course, a net allowable bearing capacity of 3,000 psf may be used. Total settlements of 1.0-inch and differential settlements of $\frac{1}{2}$ -inch or less are anticipated for properly constructed foundations at this location.

Generator Building

For the generator building, spread footings and monolithic structural slabs are both appropriate alternatives. However, in order to provide a uniform bearing stratum and reduce the risk of excessive differential movements, it is recommended that the foundations be constructed above a minimum of 24-inches of structural fill.

Due to their plasticity, the native clay soils are not suitable for reuse as structural fill. Imported structural fill should consist of a granular, non-expansive, <u>non-free draining</u> material with greater than 10% passing the #200 sieve and Liquid Limit of less than 30. However, all proposed imported structural fill materials should be approved by HBET.

For spread footing foundations, the footing areas may be trenched. However, for monolithic slab foundations, the structural fill should extend across the entire building pad area to a depth of 24-inches below the turndown edges. Structural fill should extend laterally beyond the edges of the foundations a distance equal to the thickness of structural fill for both foundation types.

Prior to placement of structural fill, it is recommended that the bottoms of the foundation excavations be scarified to a depth of 6 to 8-inches, moisture conditioned, and re-compacted to a minimum of 95% of the standard Proctor maximum dry density, within $\pm 2\%$ of the optimum moisture content as determined in accordance with ASTM D698. However, soft soils were encountered in the subsurface and this may make compaction of the subgrade difficult. It may be necessary to utilize geotextile and/or geogrid in conjunction with additional granular fill to stabilize the subgrade. HBET should be contacted to provide recommendations for stabilization based upon the actual conditions encountered during construction.

Structural fill should be moisture conditioned, placed in maximum 8-inch loose lifts, and compacted to a minimum of 95% of the standard Proctor maximum dry density for fine grained soils or modified Proctor maximum dry density for coarse grained soils, within $\pm 2\%$ of the optimum moisture content as determined in accordance with ASTM D698 or D1557C, respectively. Structural fill should be extended to within 0.1-feet of the bottom of the foundation. No more than 0.1-feet of gravel should be placed below the footings or turndown edge as a leveling course.

For structural fill consisting of imported granular materials, and foundation building pad preparation as recommended, a maximum allowable net bearing capacity of 1,500 psf may be used. In addition, a modulus of subgrade reaction of 200 pci may be used for suitable imported structural fill. Foundations subject to frost should be at least 24 inches below the finished grade.

In general, for properly constructed shallow foundations, HBET anticipates total settlement are anticipated to be 1.0-inch or less and differential settlements are anticipated to be ¹/₂-inch or less. However, if excess moisture is permitted to infiltrate into the shallow subsurface, total differential movements could exceed 1.0-inch.

Lateral Resistance

Lateral resistance can be developed from sliding friction between the foundations and the ground. A sliding friction angle of 18° is recommended. This corresponds to a friction factor of 0.32.

Corrosion of Concrete and Steel

Water soluble sulfates are common to the soils in Western Colorado. Therefore, at a minimum, cement adequate for Sulfate Exposure Class S1 is recommended for construction at this site.

Based upon our experience in the vicinity of the subject site, the native clay soils are anticipated to have a resistivity of less than 1,000 ohm-cm. In addition, groundwater fluctuations will tend to facilitate corrosion. Therefore, corrosion should be considered for any steel foundation elements, utility lines, etc.

Lateral Earth Pressures

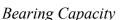
Any stemwalls or retaining walls should be designed to resist lateral earth pressures. For backfill consisting of the native soils or imported granular, non-free draining, non-expansive material, we recommend that the walls be designed for a moist equivalent active fluid unit weight of 45 pcf and a saturated equivalent fluid unit weight of 80 pcf. In general, HBET recommends against using passive earth pressures due to the magnitude of movement required to mobilize it. However, if passive pressures are used, an equivalent passive fluid unit weight of not more than 150 pcf may be used for both moist and saturated conditions.

Where surcharge loads are present, HBET recommends that a coefficient of 0.39 be applied to the surcharge to compute lateral loading associated with the surcharge. A moist unit weight of 105 pcf may be used for the in-situ native soils.

Seismic Design Criteria

In general, based upon the results of the subsurface investigation and upon our experience at the VA Hospital, Site Class D is appropriate for this site.

Non-Structural Floor Slab and Exterior Flatwork Recommendations


In order to limit the potential for excessive differential movements of slabs-on-grade it is recommended that non-structural floating floor slabs be constructed above a minimum of 18-inches of structural fill with subgrade preparation and fill placement in accordance with the *Foundation Recommendations* section of this report. It is recommended that exterior flatwork be constructed above a minimum of 12-inches of structural fill.

Drainage Recommendations

<u>Grading and drainage are critical to the long-term performance of the structure</u>. Grading around the structure should be designed to carry precipitation and runoff away from the structure. It is recommended that the finished ground surface drop at least twelve inches within the first ten feet away from the structure. It is also recommended that landscaping within five feet of the structure include primarily desert plants with low water requirements. In addition, it is recommended that automatic irrigation, including drip lines, within ten feet of foundations be minimized.

HBET recommends that surface downspout extensions be used which discharge a minimum of 15 feet from the structure or beyond the backfill zone, whichever is greater. However, if subsurface downspout drains are utilized, they should be carefully constructed of solid-wall PVC and should daylight a minimum of 15 feet from the structure. In addition, an impermeable membrane is recommended below subsurface downspout drains. Dry wells should not be used.

General Recommendations

In general, for well compacted native clay soils, where no structural fill is utilized, HBET recommends a maximum net allowable bearing capacity of 1,000 psf.

Subgrade Strength

In general, based upon our experience with the native sand soils in the vicinity of the subject site, HBET recommends that a Resilient Modulus of 3,000 psi be utilized for these materials. This corresponds to a CBR of 2.0 or R-value of less than 5.

Excavations

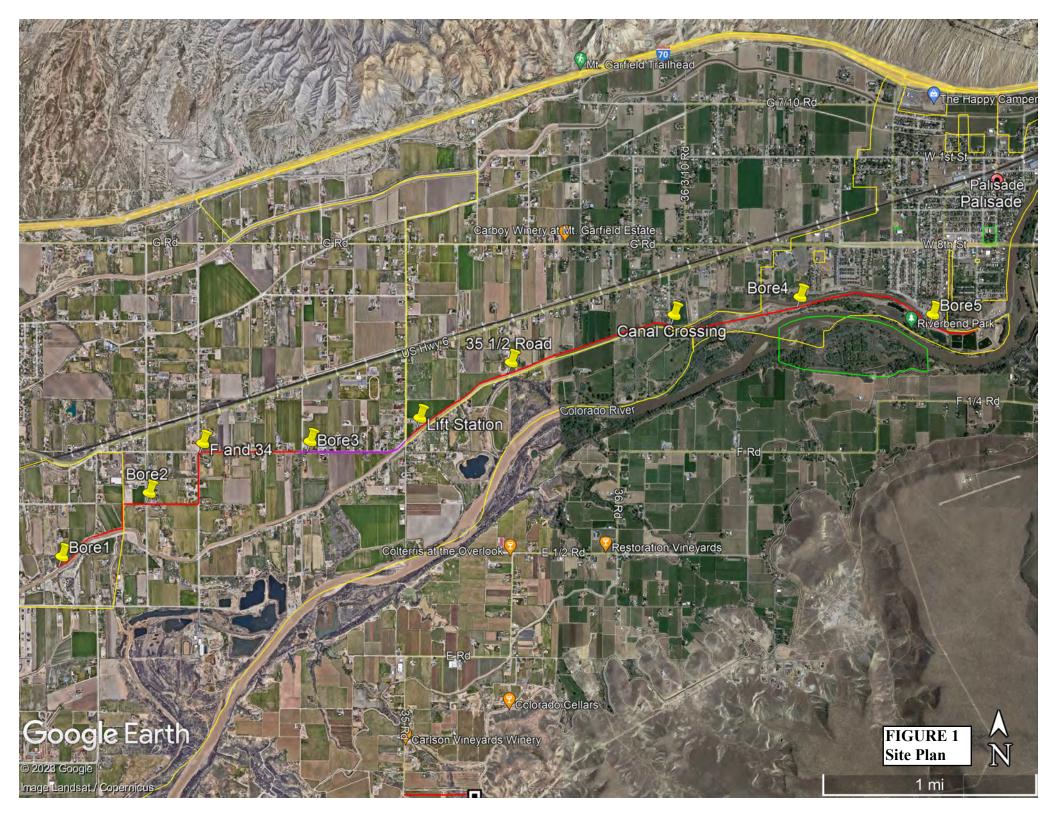
Excavations in the soils at the site may stand for short periods of time but should not be considered to be stable. In general, the site soils classify as Type C soil with regard to OSHA's *Construction Standards for Excavations*. For Type C soils, the maximum allowable slope in temporary cuts is 1.5H:1V. However, due to the presence of soft soils, shoring or trench boxes will likely be required.

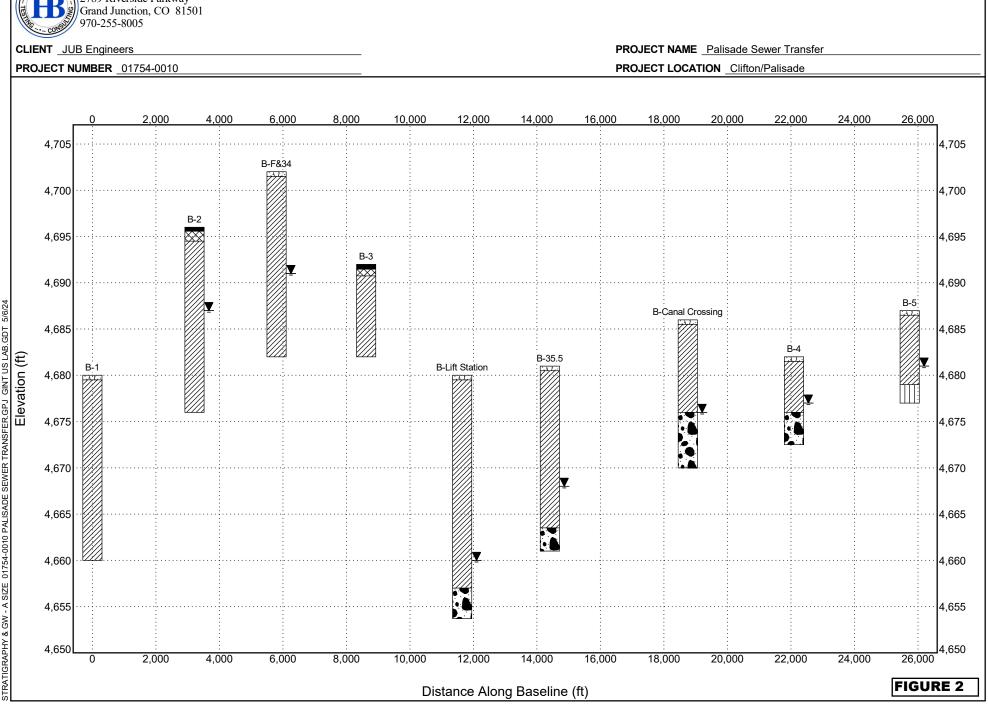
General Notes

The recommendations included above are based upon the results of the subsurface investigation and on our local experience. These conclusions and recommendations are valid only for the proposed construction.

As discussed previously, the subsurface conditions at the site were slightly variable. However, the precise nature and extent of subsurface variability may not become evident until construction. As a result, it is recommended that a representative of HBET be retained to provide engineering oversight, construction materials testing, and special inspections during the construction. This is to verify compliance with the recommendations included in this report or permit identification of significant variations in the subsurface conditions which may require modification of the recommendations.

We are pleased to be of service to your project. Please contact us if you have any questions or comments regarding the contents of this report.


Respectfully Submitted: Huddleston-Berry Engineering and Testing, LLC



Michael A. Berry, P.E. Vice President of Engineering

Huddleston-Berry

FIGURES

Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway

SUBSURFACE DIAGRAM

APPENDIX A Typed Boring Log

Entre I	B	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005					BO	RIN	IG N	NUN		R E ≡ 1 C	
CLIEN		3 Engineers	_ PROJEC		Palis	ade Sewer	Trans	fer					
PROJ	ECT NI	JMBER _01754-0010											
DATE	STAR	ED _2/27/24 COMPLETED _2/27/24	GROUN	D ELEVA		4680 ft		HOLE	SIZE	4-ind	ch		
DRILL	ING CO	DNTRACTOR S. McKracken											
DRILL	ING M	ETHOD Simco 2000 Truck Rig				LING dry							
		TC CHECKED BY MAB				ING dry							
NOTE	S		_ AF	TER DR	LLING				1				1
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		PLASTIC	S S	FINES CONTENT (%)
0	1. A. L. 1. A			0	<u>ш</u>		<u> </u>				-	d d	Ē
		Lean CLAY with Organics (TOPSOIL) Lean CLAY (CL), brown, moist, soft to medium stiff		-									
				ss 1	96	4-2-3-4 (5)	_						
5		**Lab Classified: GB1		m GB					4	27	16	11	86
				SS 2	63	1-1-1-1 (2)	-						
<u> 10 </u>													
· -				ss 3	83	0-2-1-2 (3)	-						
				ss 4	38	1-1-2-3 (3)	-						
		Bottom of hole at 20.0 feet.											

	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005					BO	RIN	IG N	NUN		R E = 1 C	
CLIENT JUB		PROJEC ⁻		Palis	ade Sewer	Trans	fer					
	MBER 01754-0010				Clifton/Pali							
	ED 2/27/24 COMPLETED 2/27/24						HOLE	SIZE	4-inc	:h		
	NTRACTOR S. McKracken											
	THOD _Simco 2000 Truck Rig				LING <u>9.0</u>	ft / Ele	ev 468 [.]	7.0 ft				
	TC CHECKED BY MAB	_			.ING 9.0 f							
			FER DRI									
			ш	%			Ŀ.		ATT			Ч
o UEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID			FINES CONTENT
-	Granular BASE COURSE											
	Lean CLAY (cl), brown, moist to wet, very soft to medium	stiff										
						1						
			V ss	58	14-8-5-5							
			1		(13)							
						-						
5												
						-						
			V ss		0-0-1-1							
			2	88	(1)							
T			/ \			-						
10			<u> </u>									
			$\begin{vmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	100	0-1-1-1							
			/ 3		(2)							
			' V			-						
15												
												1
				100	0-1-0-1 (1)							
20	Bottom of hole at 20.0 feet.		/ \									
	Bollom of hole at 20.0 feet.											
												1

IEIIIA	B	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005					BO	RIN	IG N	IUN		RE ≣ 1 C	
CLIE	NT JU	B Engineers	PROJEC	T NAME	Palis	ade Sewer	Trans	fer					
		UMBER 01754-0010											
DATE	E STAR	TED _4/10/24 COMPLETED _4/10/24	GROUN	D ELEVA		4692 ft		HOLE	SIZE	4			
		ONTRACTOR S. McKracken											
		ETHOD Simco 2000 Truck Rig				LING Dry							
		CHECKED BY MAB				ING Dry							
NOT	=ə									AT1	ERBE		
DEPTH (ft)	GR	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			S	FINES CONTENT (%)
0.0		ASPHALT Pavement											
L .													
		Granular BASE COURSE											
-		Lean CLAY (cl), brown, moist, medium stiff to stiff		-									
- 2.5													
				SS 1	46	4-6-4-4 (10)							
- 5.0				/			-						
- ·													
_ ·	-												
7.5													
 10.0				SS 2	100	3-3-4-5 (7)							
- - - - - - - - - - - - - - - - - - -		Bottom of hole at 10.0 feet.											

- TESTING	B	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005			BC	DRIN	NG	NUN	MBE		3-3 { ≣ 1 C	
LIEN	NT JUE	3 Engineers	PROJECT NAME	Palis	ade Sewer	Trans	fer					
PROJ	ECT NU	JMBER 01754-0010	PROJECT LOCA		Clifton/Pali	sade						
DATE	STAR	COMPLETED 3/6/24	GROUND ELEVA		4681 ft		HOLE	SIZE	4-inc	:h		
RIL		DNTRACTOR S. McKracken	GROUND WATE		LS:							
		ETHOD Simco 2000 Truck Rig) ft / E	lev 46	68.0 ft				
		TC CHECKED BY MAB	_									
			AFTER DR	ILLING	i							
			Щ	%		ż	Л.	(%	AT	ERBE		ENT
	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT
0	<u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	Lean CLAY with Organics (TOPSOIL)										
-		Lean CLAY (cl), brown, moist to wet, soft to medium stiff										
-			ss	92	3-3-2-2							
_					(5)	-						
5												
-												
-				67	2-1-2-3 (3)							
- 10			/ \									
-												
-					0-1-2-2							
-		<u>L</u>	SS 3	83	(3)	_						
15												
-												
-		Sandy GRAVEL and COBBLES (gw), brown, wet, dense dense	to very									
- 20			SS 4	50	20-28-25- 25 (53)							
20		Bottom of hole at 20.0 feet.	Y			1						

2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005 CLIENT _JUB Engineers PROJECT NUMBER _01754-0010 DATE STARTED _2/28/24 COMPLETED _2/28/24 DRILLING CONTRACTOR _S. McKracken	PROJECT					fer					
DATE STARTED 2/28/24 COMPLETED 2/28/24		LUCAI			aada						
							SIZE	4 inc	h		
JRILLING CONTRACTOR 5. MICKTACKET						HULE	SIZE	4-100	1		
DRILLING METHOD Simco 2000 Truck Rig				LING <u>5.0</u>	ft / Elo	V 467	70#				
LOGGED BY TC CHECKED BY MAB				ING <u>5.0 f</u>							
		ER DRII				4077	.0 11				
					[ΔΤΤ	ERBE	RG	
H (£) DH BOJ MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		IMITS		FINES CONTENT
0.0 <u>A way of the second seco</u>										<u>ш</u>	+
Lean CLAY (cl), brown, moist, soft to medium stiff											
2.5		SS 1	71	3-3-2-3 (5)							
5.0 Sandy GRAVEL and COBBLES (gw), brown, wet, dense to dense	o very										
Bottom of hole at 9.5 feet.		SS 2	33	28-30-30 (60)	-						

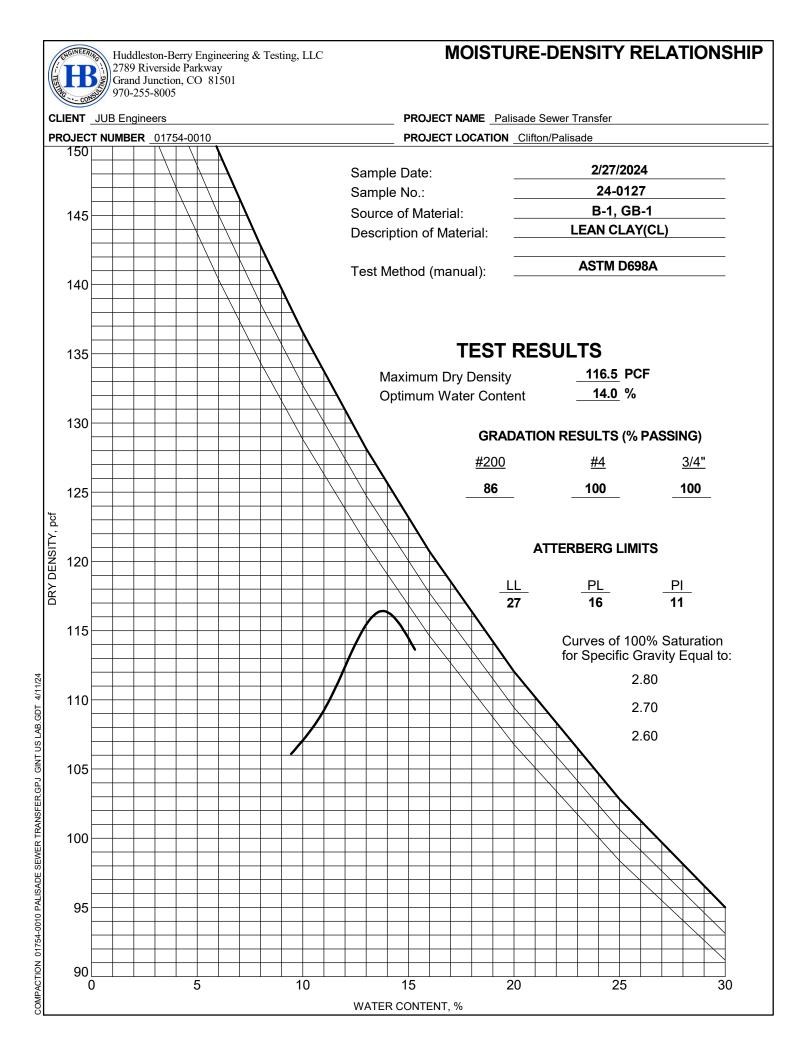
Entre Farmer	B	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005					BO	RIN	IG N	IUN		R E ≣ 1 C	
CLIE	NT JU	B Engineers	PROJEC [.]		Palis	ade Sewer	Trans	fer					
		UMBER 01754-0010				Clifton/Pali							
		TED _2/28/24 COMPLETED _2/28/24	-					HOLE	SIZE	4-inc	:h		
		DNTRACTOR S. McKracken											
		ETHOD Simco 2000 Truck Rig				LING <u>6.0</u>	ft / Ele	v 468	1 0 ft				
						ING <u>6.0 f</u>							
				TER DRI				1001	.0 10				
			-							ATT	ERBE		F
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID			FINES CONTENT
0.0	<u>x 1</u> /2 . <u>x</u> t	Lean CLAY with Organics (TOPSOIL)										-	-
		Lean CLAY (cl), brown, moist, very soft to medium stiff											
2.5				SS 1	71	2-1-2-2 (3)	_						
- - <u>5.0</u>						(0)	-						
- - 7.5		Sandy SILT (ML), brown, wet, very loose					-						
-	-	Sandy SILT (ML), brown, wet, very loose		SS 2	75	2-0-0-0 (0)			32	NP	NP	NP	61
10.0]	**Lab Classified: SS2		/ \									
		Bottom of hole at 10.0 feet.											

	Englishe in	BILL CONSUL	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005		BOR	ING	INUM	BEF	R B-	Ca	nal	Cro Page	SSİI E 1 0	ng ⊩ 1
	CLIEN	IT JU	B Engineers	PROJECT		Palis	ade Sewer	Trans	fer					
	PROJ	ECT N		PROJECT		ION _	Clifton/Pali	sade						
	DATE	STAR	TED _3/7/24 COMPLETED _3/7/24	GROUND	ELEVA		4686 ft		HOLE	SIZE	4-inc	h		
	DRILL	ING C	ONTRACTOR S. McKracken											
			ETHOD Simco 2000 Truck Rig	_			LING							
			TC CHECKED BY MAB				.ING <u>10.0</u>	ft / Ele	ev 467	6.0 ft				
	NOTE	S		AFT	ER DRI	LLING		1	1	1				
	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
ľ		<u>'' 1''</u> 'r	Lean CLAY with Organics (TOPSOIL)											
			Lean CLAY (CL), brown, moist, soft to medium stiff											
			**Lab Classified: SS1		SS 1	63	4-4-6-7 (10)	-		19	31	16	15	94
					SS 2	67	3-2-1-2 (3)	-						
Z N														
	<u> 10 </u> - -		Sandy GRAVEL and COBBLES (gw), brown, wet, dense to dense	very										
				F				-						
110-40/10 20	15				SS 3	83	17-18-23- 35 (41)							
			Bottom of hole at 16.0 feet.	/	<u> </u>									
		·												-

Ender TESTING	B B COMBUS	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005				BO	RIN	G N	UM	BEI		- F& ≣ 1 0	
CLIE	NT JU	B Engineers	PROJEC	T NAME	Palis	ade Sewer	Trans	fer					
PRO.	JECT N	UMBER 01754-0010				Clifton/Pali	sade						
DATE	E STAR	TED _3/6/24 COMPLETED _3/6/24	GROUNE) ELEVA		4702 ft		HOLE	SIZE	4-inc	h		
DRIL	LING C	ONTRACTOR S. McKracken	GROUNE	WATER	R LEVE	LS:							
DRIL	LING M	ETHOD Simco 2000 Truck Rig	$ar{2}$ at	TIME OF	DRIL	LING) ft / El	ev 46	91.0 ft				
LOG	GED B)	CHECKED BY MAB	▼ AT	END OF	DRILL	.ING 11.0	ft / Ele	ev 469	91.0 ft				
NOTE	ES		AF	TER DRI	LLING					-			
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			3	FINES CONTENT (%)
0	1. A. L A			0	ш. —		ш. —				-	L L	Ē
		Lean CLAY with Organics (TOPSOIL) Lean CLAY (cl), brown, moist to wet, very soft to medium	stiff	SS 1	42	5-3-3-2 (6) 1-1-1-1 (2)	-						
 		x		SS 3	88	0-1-1-1 (2)	-						
 		Bottom of hole at 20.0 feet.		SS 4	79	1-1-1-1 (2)	-						

TESTING.	Bulleer The Source of the Sour	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005		BO	ring i	NUN	/IBE	ER E	3-Li [.]	ft St PAGE	tatio ≞10	ON 0F 1
CLIE	NT JU	B Engineers PF	ROJECT NAME	Palis	ade Sewer	Trans	fer					
PRO	JECT N		ROJECT LOCA		Clifton/Pali	sade						
DAT		TED _3/7/24 COMPLETED _3/7/24 GI			4680 ft		HOLE	SIZE	4-inc	h		
DRIL	LING C	ONTRACTOR S. McKracken GI	ROUND WATE	R LEVE	LS:							
		IETHOD Simco 2000 Truck Rig	$\overline{\mathbf{Y}}$ at time c) ft / El	ev 46	60.0 ft				
LOG	GED B	CHECKED BY MAB	TAT END O	F DRILI	LING 20.0	ft / Ele	ev 466	0.0 ft				
			AFTER DR									
L I	알		TYPE	RY %	LES LES	PEN.	г WT.	JRE T (%)	AT1 I	ERBE	3	NTENT
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTUC		PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
0	<u></u>	_ Lean CLAY with Organics (TOPSOIL)										ш
-		Lean CLAY (cl), brown, moist, soft to medium stiff										
-			SS 1	38	2-2-2-3 (4)	_						
_ 5												
-	-		ss 2	42	2-2-2-2 (4)	_						
- 10	-					_						
-												
1 5/6/24				75	0-1-0-1 (1)	-						
	-											
			ss ss	79	0-1-2-2 (3)							
20 EWER		∑										
		Sandy GRAVEL and COBBLES (gw), brown, wet, dense to vi dense	ery									
25 25												
		Bottom of hole at 26.3 feet.	SS 5	17	50	-						
GEOLEC												

APPENDIX B Laboratory Testing Results



Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005

GRAIN SIZE DISTRIBUTION

	ENT		B Er	igine	ers																	PF	20	JE	СТ	NA	ME	<u>P</u>	ali	sac	le	Sev	ver	Tra	nsfe	er									
PRO	OJEC ⁻	ΓN	UMB	ER	017	754	-0(01(0												_	PF	20	JE	СТ	LO	CA		Ν	С	liftc	on/F	Pali	sad	е										
			U	.S. S		0 OI 4		NIN 2	G IN	N IN	CHE	ES 4 1	/23	8	3	4	6	8	U. 10	S. S 14 1	SIEV	/E N 20	NUN 30	MBE 40	RS	0 60	0	100 1	140	200	า				H١	YDR	ROM	1ET	ER						
	100			T		İ	-	T	T				T		Ť	¢.	Ť	ſŤ		T	F	Ŧ	Ĭ	ŧ	Ę	H	Ţ		T																
	95	+	_	-				$\left \right $	+	+			_	+					+							\neg	\uparrow	5	\geq			$\left \right $						+		-	+	-		-	
	90	_		_			-												-								A		\downarrow												_			_	
	85															•••••								:																					
																•••••																													
	80						-																							÷															
	75								+	+						•													$\left(\right)$																
	70	_	-	-			: :	$\left \right $	+	+	:			\parallel					+				_						+		_	$\left \right $	_					+		_	+	-		-	
L	65							$\left \right $	_	_	:								+											N:											_				
НIJ	60						-									•••••																													
ME N																•••••																													
PERCENT FINER BY WEIGHT	55							Π																																					
	50									+																																			
ЧЧ	45	+	-	-			:	$\left \right $	+	+			_	+					+								+		-			$\left \right $						+			+	-		-	
RCE	40		_	_			:	\square	_	+	:					:			-					:						:											_	_		_	
Ц	35																							:																					
	30															••••														•															
																•••••																													
	25						-			1																																			
	20						:			+	:								+								+																		
	15	_	_	-			:	$\left \right $		+	:			\parallel		•			+										-			$\left \right $									-	_		-	
	10							$\left \right $		_	:					:			-					:								\mid									_			_	
	5															•••••								:																					
	0																																												
					1(00							1()							1								0.1	1						0.	01						0	.00	1
	r															_	0	GR/	٩IN	SI					IME	ETE	R	S																_	
			COE	3BL	ES		┝				RA	VE							Т					1D			£			_				S	SIL	ΤС	DR	C	;LA	١Y					
	l								oar	se			fir	ie				rse			ned						fin	le								_						1			
	ecim 3-1, (entif	icat																			<u>,</u>										-			Pl		_	P		(Сс		Cu
							/7	-										.EA AN				•												-	27 NP	-	16 NF		-	11 NF				-	
		5, SS-2 3/7 anal Crossing 3/7															AN EA						-											NP 31	+	181 16		-	15 15				+		
	and													_					• (•		-,												+		-			-			+				
																												1																	
<u> </u>	ecim			entif	icat					D10				D	60)			D	30)			[D1(0		%		Gra		el			San				%	Sil				Cl	ay
	3-1, (/7	-		9.8																		-		0.3					4.0							85.'			
	8-5, S ana			ein	a		/7 /7	-		2 2																				0.0 0.0					9.4 5.9		+					60. 94.			
	alid	10	105	SIII	9	3	1	-		2																				U.U	/			;	J.J		+				;	7 4.	1		
+																																					+								
								1																				1					1												

	ENGINEER	▶ {}} 2789 Ri	ston-Berry Engine iverside Parkway unction, CO 8150 5-8005		Testing,	LLC		ATTERBERG LIMITS' RESULTS
c		JUB Engine	eers					PROJECT NAME Palisade Sewer Transfer
Р	ROJEC		01754-0010					PROJECT LOCATION Clifton/Palisade
		60					CL	СН
	P L	50						
	L A S T I C	40						
	I T Y	30						
	I N E X	20						
	X	10 	L	•			(ML)	(MH)
		0	20			40	\bigcirc	60 80 100
								LIQUID LIMIT
	Spe	cimen Ide	ntification	LL	PL	PI	#200	Classification
	B-1,	GB-1	3/7	27	16	11	86	LEAN CLAY(CL)
X	B-5,	SS-2	3/7	NP	NP	NP	61	SANDY SILT(ML)
	Cana	al Crossir	ng, SS-1 3/7	31	16	15	94	LEAN CLAY(CL)
-74								
1/11/24								
AB.GU								
10100								
+6/10								
בו אפ								
٦L								

